Implementation of Wireless Networks Takes Time and Patience

Real-World Wireless: The Daily Travails of an Instrument and Controls Engineer to Overcome the Frustrating Obstacles and Unexpected Mysteries of a Wireless Network Project Aren't Covered in the Manual

Share Print Related RSS
Page 1 of 3 « Prev 1 | 2 | 3 View on one page

By Alice McWilliams, PE, Chevron Phillips

The application of new technologies seldom goes as planned and can be an outright adventure. But the potential for significant cost savings can make overcoming the hazards and pitfalls well worth the journey.

That was the case at our plastics plant in Pasadena, Texas, where we needed to overcome obstacles and create a wireless system to monitor certain data readings.

Initially, the impetus for the project involved the need to obtain two readings, but things escalated quickly. The equipment was installed in August 2007. Design for the installation had started earlier, in February.

The Application: a Wireless Opportunity

We have a 40-ft-tall API tank used when we unload a barge. Each time, the operator would climb the tank to record temperature at the vent and vent valve position after the tank's condenser unit. The plant wanted to automate the recording of measurements to record the vent temperature and vent valve position to provide improved documentation for our environmental records and improve operator efficiency by eliminating the time-consuming, lengthy, repeated trek to the top of the tank (Figure 1).

Because the process variables we wanted to measure were at the very top of this tank, it would have required a long cable and conduit run up the side of the tank. It would have required a 40-ft-tall scaffold to run the conduit and cable. The costs to obtain just two new readings did'nt seem justified compared to a traditional hardwired method.

"We began to look at a wired solution," says John Scott, senior account manager from the Rosemount division at Emerson Process Management (www.emersonprocess.com), "but we came up with a 65% installation savings by going wireless. One of the bigger costs for a wired solution would have been the scaffolding.”

Wireless obviously was the best choice. We looked at several wireless network solutions but determined that Emerson was a good choice for this plant. Regular-style wired Rosemount transmitters already were used at this unit. Training on the handheld was up-to-date. This meant that training only needed to cover troubleshooting changes due to the wireless hardware and setup. This would minimize our training costs, as well.

Wireless Network Design

We began to seriously explore implementing a wireless solution to this problem. One concern was how to provide valve position. Emerson didn't offer any direct valve-positioning transmitters except as an add-on to the digital valve positioner. The controller for tank pressure was a local pneumatic controller with a pneumatic valve positioner. I eventually realized that I could use a pressure transmitter on the controller output and provide an implied valve position.

Designing a wireless network, to my interpretation, meant that cable runs were kept to a minimum, reducing both installation and material costs. It seemed, therefore, that the best location for the wireless gateway would naturally be on top of the rack room (Figure 2). I could easily interface with the old Provox DCS equipment via the intelligent device interface module set to accept Modbus and run only three short cables—Modbus, Ethernet and power—to the roof.

This older version of the wireless network required that the distance to the gateway be less than 500 ft. The temperature and valve-position-measurement points were 600 ft away from the rack room. Additional transmitters between the API tank and the rack room were needed to act as repeaters for the API tank data. These additional wireless applications between the API tank and the rack room would improve both distance and stability needs. Mesh wireless networks also become more stable as the number of nodes to the network increases. Fortunately, it was easy to find more readings that the plant wanted. The production engineers for our unit also were excited about trying a wireless network. Two additional measurement applications, the bearing temperatures for two pumps and the barge unloading line pressure, fell into our laps (Figure 3).

One of the pumps on a tank closer to the rack room had experienced bearing failure earlier that year and caused a hydrocarbon leak into the electrical housing. Monitoring the pump bearing temperature would improve reliability and safety in this operation.

Page 1 of 3 « Prev 1 | 2 | 3 View on one page
Share Print Reprints Permissions

What are your comments?

Join the discussion today. Login Here.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments