Design Collaboration Tools With More

Get It Together: Accessible, Common Platforms Promote Work-Sharing Among Machine Builder, Customer and Supplier

By Jim Montague, Executive Editor

Share Print Related RSS
Page 1 of 4 « Prev 1 | 2 | 3 | 4 View on one page

It helps to be on the same page. Whether you're singing hymns or designing complex machines, it's crucial to have the right documents in front of the right people at the right time. But, perhaps because easy access to essential plans is so obvious, it commands less attention than flashier methods — just like singers or musicians, who focus on the 1/8 and 1/16 notes, but fall asleep and flub the easy, whole notes.

So even though putting designs at team members' fingertips is very powerful, and streamlining that access is essential for complex projects, these benefits don't often get the recognition they deserve. Nowhere is this truer than when a common design platform provides simultaneous access to a project by all its contributors; breaks down the former sequential silos separating mechanical, electrical, controls and software designers; and accelerates their interactions and problem solving for projects that must be turned around faster.

SEE ALSO: Collaborative Design

More, Better Models
Joy Mining Machinery in Warrendale, Pa., builds high-production, underground mining machinery for users who extract coal, potash, salt and other bedded materials. The 91-year-old division of Joy Global employs a variety of 3D prototyping software to develop designs for its machines, which can range from 20 to hundreds of tons and have as many as 40,000 parts. The company reports its digital designs allow its 400 engineers at 13 engineering sites on five continents to cooperate and explore innovative designs faster; meet all safety requirements for new and rebuilt equipment before construction; minimize physical changes on the shop floor; reduce costs and speed time to market; and reuse designs for manufacturing and marketing.

"Steel is very expensive, so we don't want to start welding and cutting until all stakeholders are completely satisfied with the design," says Chris Flynn, Joy's engineering systems director. "We interpret their requirements to create digital prototypes in Autodesk Inventor, and the longer we can keep design iterations in the virtual world, the easier and more cost-effective it is to experiment with new ideas. Not only is it much easier for engineers to share designs, but we also have access to many Inventor features that we couldn't use with our old product data management (PDM) system, and we transitioned systems globally without a hitch, which was a major accomplishment."

To perform all these tasks, Joy's design engineers adopted Autodesk's Vault Collaboration software and upgraded to its latest Inventor version in 2009. They also use its AutoCAD Mechanical to share designs with suppliers that rely on 2D design data, AutoCAD Electrical to design electrical controls, and its visualization software, including Maya, Showcase and 3dsMax, to create near-real images and animations. Besides evaluating physical design concepts for space, safety and performance, the visualization and simulation tools also allow Joy's designers to conduct stress analyses and simulate machine motions to find collisions and other errors that might not otherwise show up until physical production.

For instance, Joy's designers recently developed their 14ED entry-development machine, which combines mining and bolting operations into one device, eliminates the need to alternate between two different machines and maximizes productivity without compromising safety (Figure 1). However, designing 14ED was a challenge because its combined functions needed three operators, rather than the usual one per machine. As a result, integrating all its functions and leaving adequate, safe spaces for operators required a lot of experimenting because standard enclosures couldn't be used. So they tested different shapes and locations during the design phase and used Inventor's Tube and Pipe-Routed Systems feature to find the most efficient way to route their hydraulic hoses.

"Hoses can take up a lot of workspace, and when they're bundled together, they can be as hard as pipe and difficult to move in the real world," Flynn explains. "By modeling hoses in the virtual world, we could experiment with the design to find routing that would give operators the space they need. It also saved us doing workarounds on the shop floor."

Page 1 of 4 « Prev 1 | 2 | 3 | 4 View on one page
Share Print Reprints Permissions

What are your comments?

You cannot post comments until you have logged in. Login Here.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments