Measuring Distance With Laser Sensor Technology

Manufacturing inspection applications that once required simple presence and absence detection of an object now ask sensors to solve demanding measurement and quality control tasks. Obtaining accurate and stable measurements is crucial to ensure consistent product quality and continuous production.

Laser sensor technology can solve these inspection applications with high-speed, high-precision performance. It can be used on multiple materials, reflective surfaces and colors, allowing manufacturers to collect continuous measurements in a range of industries, including applications with moving processes, stamped or machine parts, and soft or sticky parts.

Advanced laser sensors comprise a rugged, self-contained housing, a pinpoint laser emitter, a linear imager and user configurable outputs. Laser sensors require no external controller for adjustments. Operators can simply place the laser sensor in any location—including inaccessible areas of the machine or harsh environments—and make all necessary adjustments and configurations through various software tools.

Source: Banner Engineering
Automatic laser power and measurement rate control ensure reliable measurement under changing or challenging target conditions.

Linear Imagers
The linear imager is one of the primary components of a modern-day laser distance sensor, defined as the eye of the sensor, and is made of hundreds or thousands of pixels arranged in a line. Some advanced laser sensors operate based on the principle of optical triangulation, which incorporates the linear imager. The linear image is used to detect precisely where the target is in front of the sensor—ultimately resulting in an accurate, stable measurement. A laser emitter transmits visible laser light through a lens, towards a target or object. The laser light is reflected diffusely from the surface of the target, where a receiver lens on the sensor then focuses that reflected light, creating a spot of light on the linear imager.

The target's distance from the sensor determines the angle the light travels through the receiver lens; this angle then determines where the received light will hit the linear imager. If the target is far away (at the maximum specified range), then the light will fall toward the end of the imager closest to the laser emitter. Alternatively, if the target is at its closest position (at the minimum specified range), then the light will land at the opposite end of the imager farthest away from the laser emitter. The position of the light on the linear imager is calibrated in the factory for all valid target distances. The received light is processed through analog and digital electronics and analyzed by the digital signal processor (DSP), which determines the distance to the current target relative to the start of the measurement range very precisely by calculating the location of the received light on the linear imager and updating the sensor output to indicate the correct target distance.

Read more of this article:

More News:

  • China Adopts EtherCAT as a National Technology Standard

    Chinese company representatives shared experiences about their numerous EtherCAT systems and applications with the audience and explained the benefits realized through implementation.

  • HART-Fieldbus Foundation Marriage Complete

    The final step in constructing a single organization to lead process automation communications and integration technologies was completed at the end of August when the members of both the HART Communication Foundation and Fieldbus Foundation approved the merger proposed by their respective boards.

  • Use of BYOD Spreads, But Holdouts Remain

    Manufacturing workers are jumping on the bring-your-own-device (BYOD) bandwagon,

  • ISA100 Wireless Standard Gains Final IEC Approval

    ANSI/ISA-100.11a-2011, "Wireless Systems for Industrial Automation: Process Control and Related Applications," has been unanimously approved by the IEC as an international standard

  • Mergers, Acquisitions & Alliances: Danfoss Makes Offer, Hardinge Acquires Assets, and Fanuc and Rockwell Collaborate

    Danfoss made a public tender offer for all shares of the Finnish ac drives company Vacon. Hardinge, international provider of advanced metal-cutting solutions, agreed to acquire the assets of the Voumard internal diameter (ID) grinding business from Peter Wolters GmbH in Rendsburg, Germany. Maverick Technologies, acquired CQS Innovation, a system integrator specializing in control and information systems for life sciences, chemical and metals industries.

  • Belden Advocates Ethernet, Security and Wireless

    The Internet of Things (IoT) and the industrial IoT will use increasingly intelligent network infrastructures, but this will create more risk and increase the need to protect those critical infrastructures and their data. That's why we're investing both organically and through acquisition in Ethernet, security and wireless—so we can help transform this interconnected world.

  • The Future Is Forged at IMTS 2014

    Front and center was large-scale additive manufacturing in the form of the world's first 3D-printed car, which was printed and assembled on-site at the show. The project was a cooperative effort by Local Motors, Cincinnati Inc.; Oak Ridge National Laboratory; the University of Tennessee; and IMTS' Association for Manufacturing Technology (AMT).

  • Big Manufacturing Trade-Shows Dominate November Calendar

    There Will be More than 100 Exhibits Featuring Products and Services from Rockwell Automation and its Network of more than 100 Partners.

  • Honeywell OneWireless Takes the Prize for Best Wireless Solution

    The OneWireless Network is designed to enhance efficiency, safety and reliability in business processes. The OneWireless Network offers flexibility and scalability, wire-like performance with wireless security and best-in-class data availability with a low cost of ownership.

  • The Center for Compact and Efficient Fluid Power Hosts International Conference on Workforce Skills Transforming the Fluid Power Industry

    A panel session, featuring Vanderbilt University's Chancellor Nicholas Zeppos and Dean of Engineering Philippe Fauchet, will focus on the future of public-private partnerships in innovation, high-technology workforce skills, and ways to accelerate the transition of research to the marketplace.

All news »

What are your comments?

Join the discussion today. Login Here.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments