Three Easy Steps to Sizing Motors

Drive and Motor Sizing Made Easy
Size your drive and motor in three easy steps:

  • Determine the application requirements
  • Size the motor to meet the application
  • Size the drive to meet the motor and the application

Determine the Application Requirements
What are the torque requirements?

  • Motor torque (not power) is usually the decisive factor
    • Torque requirement establishes current requirement
  • Continuous torque requirements
    • Variable torque vs. constant torque
  • Intermittent (peak) torque requirements
    • Starting torque
    • Acceleration torque
What is the speed requirement?
  • Maximum speed
  • Minimum speed

Torque, what is it?
A measure of the effect of a force applied at a distance to an axis.

  • Torque is a force that tends to rotate or turn things
  • Torque(lb-ft) = Force (lb) x Radius (ft)

Variable Torque
Variable torque changes as the operating speed changes.

  • Fans
  • Centrifugal pumps
  • Centrifugal blowers
  • Mixers (material dependent)

Constant Torque
Constant torque remains the same as the speed changes.

  • Conveyers
  • Positive displacement pumps
  • Extruders
  • Crushers
  • Mixers (material dependent)
  • Rotary kilns
  • Hoists
  • Elevators

Constant vs. Variable Torque
Why should I care? Isn’t all torque the same?

Yes. But ….

  • Motor current is proportional to torque
  • Motor heating is proportional to current
  • In the case of a TEFC motor, cooling is proportional to speed

Result — a TEFC motor's ability to thermally handle torque varies with speed

A constant torque load often requires a larger TEFC motor than that required for an equivalent variable torque load.

  • Alternative is a separately driven fan, TEBC motor

Intermittent Torque
Intermittent torque is torque that is required for a relatively short period of time. Examples:

  • Torque to breakaway the load and start motion
    • Friction
  • Torque to accelerate the load
    • Inertia

Speed
With direct mechanical drive, motor speed is determined by mechanical speed and physical dimensions.

Speed (RPM) = v (ft/min) / (r (ft) x 2 x pi)

Speed Example
Speed (RPM) = v(ft/min) / (r(ft) x 2 x pi)

Speed (RPM) = 750(ft/min) / (1 (ft) x 2 x pi) = 119 (RPM)

Power
Power is the product of torque times speed.

  • Power (HP) = Torque (lb-ft) x Speed (RPM) / 5252
  • For our example:
    • Torque = 100 lb-ft
    • Speed = 119 RPM
    • Power = 100 (lb-ft) x 119 (RPM) / 5252 = 2.3 HP
HP
 
Base Speed
 
Rated Torque 
 3  1790  9
 5  1790  15
 7.5  1790  22
 10  1790  29
 15  1790  44
 30  1790  88
 40  1790  117

Motor Sizing
In our example:

  • Torque = 100 lb-ft
  • Speed = 119 RPM
  • Power = 100 x 119 / 5252 = 2.3 HP
What size motor do we pick?
  • 3 HP @ 1790 RPM?
  • 40 HP @ 1790 RPM?

A motor only develops its nameplate power at its nameplate speed. At a reduced speed it develops a proportionately reduced power.

Motor Sizing
What if we add a gear box?

  • Torque at motor = torque / gear ratio
  • Speed at motor = speed x gear ratio

Now what motor do we pick?

Intermittent Torque
Torque for Acceleration

  • Torque = Inertia x Acceleration rate
  • If you know:
    • Inertia (WK2) in lb-ft2
    • Acceleration time in sec.
    • Change in motor speed in RPM
  • Then:
    • Torque = WK2 (lb-ft2) x Speed(RPM) / (Accel time(sec.) x 307.6)

Intermittent Torque
Torque for Acceleration

  • Assume for our example:
    • Total WK2 = 1.2 lb-ft2
      • Includes 100 lb load, drum, 15:1 gear box and motor
    • Change in speed is 1790 RPM
    • If accel time is 10 seconds
      • Accel Torque = 1.2(lb-ft2) x 1790(RPM) / (10(sec.) x 307.6)
      • Accel Torque = 0.7(lb-ft)
      • Total torque = 6.7 + 0.7 = 7.4 lb-ft; less than rated motor torque
    • If accel time = 1 second
      • Accel Torque = 1.2(lb-ft2) x 1790(RPM) / (1(sec.) x 307.6)
      • Accel Torque = 7.0 (lb-ft)
      • Total torque = 6.7 + 7.0 = 13.7 lb-ft, 150% of rated motor torque

Pick A Drive

  • Assume for our example:
    • Motor is 3 HP, 1790 rpm, 4.2 FLA, 9 lb-ft
    • Torque to lift load and accel in 10 s is 7.4 lb-ft
      • Max current is less than 4.2 amps
      • Use 3 HP normal duty drive, 4.9 amps, with 110%
        O.L. (5.4 amps peak)
  • Torque to lift load and accel in 1 s is 13.7 lb-ft
      • Max current is about 6.4 amps
      • Use 3 HP heavy duty drive, 5.6 amps, with 150%
        O.L. (8.4 amps peak)

Special Cases
Intermittent torque is required for a relatively long time.

    • Large inertias
      • Results in long accel time, several minutes
      • Drive and motor sized for acceleration torque
      • Examples
        • Centrifuges
        • Kilns
    • Long periods of breakaway torqu
      • Mixer starting with product

Watch the limits

  • Limits that can come in to play
    • Torque
      • AC Motors have max torque limits, about 200% (Drive limits motor to about 70% of motor’s rated breakdown torque)
    • Speed
      • Limited by maximum safe mechanical speed
      • Limited by maximum drive frequency
      • Limited by reduced maximum torque above base speed
        (Constant HP operation)
    • Current
      • Limited by inverter
      • Full speed motor current rises when line voltage is low
    • Regenerative (braking) torque
      • If less than 10% flux braking may be good enough
      • If more than 10% but intermittent, such has stopping only, use brake chopper and resistor
      • If more than 10% and continuous, consider a regenerative drive

More News:

  • Patent Dispute Settled Between Rockwell Automation and Beckhoff Automation

    Rockwell Automation's linear motor business, including its recent Jacobs Automation acquisition, has developed a substantial portfolio of patents comprising over 100 issued patents on linear motor technology alone.

  • Mergers, Acquisitions Alliances and Noteworthy News in Robotics

    Iten Industries, manufacturer of advanced composite components and materials headquartered in Ashtabula, Ohio, is now offering additive manufacturing and 3D printing services.

  • U.S. Economy Looks Up for Manufacturing Industries

    The August PMI is led by the highest recorded New Orders Index since April 2004, when it registered 67.1%.

  • ASME Forum Ignites 21st-Century Engineering

    Founder and president of HMI/SCADA software developer Iconics, Russ Agrusa, said the company is focusing on how to harness big data on any device and in any class of applications, and turn it into predictive analytics in manufacturing and business intelligence.

  • New Customer Care Center for Endress+Hauser

    To help customers keep up with today's challenges, Endress+Hauser's new, state-of-the-art Customer Center is suited to greet visitors with a top-notch certified training facility with multiple classrooms and its largest yet PTU controlled by Rockwell Automation's PlantPAx system for real-world process simulation with over 120 measuring points.

  • The Rise of Aluminum in the Industrial Sector

    It is not just price that makes aluminum appealing when put alongside copper in the production of items like electrical wires and cables, though.

  • Maverick Acquires CQS Innovation Expanding Process Expertise in the Life Sciences Industry

    The acquisition expands Maverick's size and scale as a global organization with 19 office locations and 500+ engineering professionals. In addition, Chris Roerig, current president of CQS Innovation, will join Maverick as industry manager for life sciences.

  • ISA Offers Cybersecurity Certificate Program

    The program consists of passing a course on using the ANSI/ISA-62443 standards to secure industrial control systems. The course is available in the classroom or online. Students must also pass a written exam in the classroom or online.

  • Fieldbus Groups 'Unite'

    The combined power of both organizations will aim to protect the investments that end users in process automation have made in HART and Foundation fieldbus communication technologies.

  • Guess Who Just Turned 125 Years Old?

    ABB recently celebrated its 125th anniversary in Finland.

All news »

What are your comments?

Join the discussion today. Login Here.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments