MapleSim: Technological Superiority in Multi-Domain Physical Modeling and Simulation

Nov. 27, 2012
Engineers constantly demand innovation in modeling and simulation. This is driven by the need to simulate, for example, ever more sophisticated vehicle systems while minimizing development time and cost. The computer models necessary to generate these designs consume project time at an increasing rate, due largely to the limitations of existing simulation tools and the need to switch between tools to address multiple physical domains. While many existing simulation tools are based on a design metaphor that works well for control system design, engineers do not find them intuitive for physical modeling. Additionally, these tools often produce simulations that are too slow to model complex systems and, in some cases, lack the mathematical power to solve the governing equations.

This white paper will explore the historical development of the early tools for simulation, and then expand on their design deficiencies. This is followed by a discussion of MapleSim, its unique design characteristics, and how it bypasses the limitations of current modeling and simulation technology.

Engineers constantly demand innovation in modeling and simulation. This is driven by the need to simulate, for example, ever more sophisticated vehicle systems while minimizing development time and cost. The computer models necessary to generate these designs consume project time at an increasing rate, due largely to the limitations of existing simulation tools and the need to switch between tools to address multiple physical domains. While many existing simulation tools are based on a design metaphor that works well for control system design, engineers do not find them intuitive for physical modeling. Additionally, these tools often produce simulations that are too slow to model complex systems and, in some cases, lack the mathematical power to solve the governing equations.

This white paper will explore the historical development of the early tools for simulation, and then expand on their design deficiencies. This is followed by a discussion of MapleSim, its unique design characteristics, and how it bypasses the limitations of current modeling and simulation technology.