How two-degree-of-freedom controllers optimize setpoint response, minimize the effect of load disturbances

Feb. 22, 2022

Greg: I am truly excited and appreciative of the involvement and achievement of leaders in process control who are coming together to create the ISA 5.9 Technical Report—a potential game changer. The PID algorithm is the most powerful tool for achieving individual loop performance as seen in the legacy of Greg Shinskey highlighted in last month’s tribute column. PID capabilities are underutilized mostly due to a lack of understanding.

Here Sigifredo Nino and I share our knowledge of PID structure and external-reset feedback (e.g., dynamic reset limit). Both of these features enable one to tune a PID to maximize load disturbance rejection as advocated by Shinskey, and still address the many other objectives and limitations. Presently, the PID is frequently detuned to deal with these situations, posing a severe, confusing burden on users, and resulting in a serious degradation in load response. The features presented here are simple to use and robust, enabling us to move on, which is greatly appreciated.


Sponsored Recommendations

Power Distribution Resource Guide

When it comes to selecting the right power supply, there are many key factors and best practices to consider.

Safe Speed and Positioning with Autonomous Mobile Robots

Here are some tips for ensuring safe speed and positioning for AMRs using integrated safety technology – many of these tips also apply to automated guided vehicles (AGVs).

Faster, Accurate and Reliable Motion Control With Advanced Inductive Technology

This white paper describes new technology offering improved position measurement capabilities in reliability, speed, accuracy and more.

The Value of Dual Rated AC/DC Disconnect Switches

Why is it necessary for me to have a disconnect switch installed in my application?