Avoid drowning in data with data analytics software

If you’re drowning in data, machine learning software may be an anchor, with data analytics software often a better solution.

By Dan Hebert, PE, contributing editor

1 of 2 < 1 | 2 View on one page

If your company builds machine or process skids, you’ve probably heard about machine learning as it’s a heavily hyped term, right up there with the now legendary, and bordering on mythical, Internet of Things.

And with a moniker like machine learning, who wouldn’t be interested? Everyone wants their machines to be smarter, and if a machine can learn on its own and somehow become better, wouldn’t that be great? Of course it would, but reality often falls short of the hype.

Machine learning takes all of the data you’ve collected from your machine or process skid, or from a whole group of these items of equipment in a plant, and automatically forges relationships among the data. Automatic learning sounds great, but what might this mean to you in practice?

Let’s say your injection molding machine collects and stores 100 data points a second. You store all of this information in an historian database, and it quickly grows to monstrous proportions as 100 data points per second equates to 360,000 data points per hour. So, you set your machine learning software loose on the data, and within minutes it begins to kick out correlations among the data.

For example, it will tell you that, when the power to the machine is off, the machine is not producing product, and correlation between these two variables is very strong. It will tell you that, when the injection molding heater is on, the temperature inside the molding area of the machine is always above 200 °F.

The machine learning software will automatically generate tens of thousands of these strong data correlations, most of which will be completely useless to you. You were drowning in data before, and now your machine learning software has thrown you the anchor of way too many strong data correlations, leaving it to you to find out which ones contain useful information.

WANT MORE? Check out the machine builder's guide to remote monitoring

Of course, machine learning software can be directed, so you can tell the software to only return certain data correlations—let’s say, those related to machine output in parts per minute, which your machine is measuring continuously. So, you might tell the software to show you which variables are correlated to a 20% or more decrease in machine output.

The software will now tell you that, when power to the machine is off, the output drops by more than 20%. It will tell you, when the injection molding temperature is less than 200 °F, output is down sharply. Instead of tens of thousands of mostly worthless correlations, you now have thousands. A smaller anchor to be sure, but still little or no solace to someone drowning in data and charged by management to make sense of it all and improve machine, process skid and/or plant operation.

So, if machine learning isn’t the answer for those who are data rich but information poor, then what is (Figure 1)?

Self-directed data analytics

Data analytics software incorporates machine learning technologies to accelerate the efforts of the user, but takes things one critical step further. The main difference is that data analytics software is always used in a directed fashion by the engineer or expert seeking specific answers or insights to a question, instead of just calculating relationships without context or focus.

“Seeq is an application specifically designed to provide faster and richer insights into the time-series data stored in historians,” says Michael Risse, vice-president of Seeq. Like other data analytics software, Seeq works with the data many machine and process skid builders already have stored in a data historian.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments